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A method for analyzing and classifying two-dimensional pure point diffraction

spectra (i.e. a set of Bragg peaks) of certain self-similar structures with scaling

factor � > 1, such as quasicrystals, is presented. The two-dimensional pure point

diffraction spectrum � is viewed as a point set in the complex plane in which

each point is assigned a positive number, its Bragg intensity. Then, by using a

nested sequence of self-similar subsets called �-lattices, we implement a

multiresolution analysis of the spectrum �. This analysis yields a partition of �
simultaneously in geometry, in scale and in intensity (the ‘fingerprint’ of the

spectrum, not of the diffracting structure itself). The method is tested through

numerical explorations of pure point diffraction spectra of various mathematical

structures and also with the diffraction pattern of a realistic model of a

quasicrystal.

1. Introduction

The absence of periodicity in quasicrystalline structures

demands new mathematical tools. From the very first experi-

mental evidence of quasicrystals (Shechtman et al., 1984) it

became necessary to build a pertinent theory of aperiodic

point sets and tilings and a spectral analysis for diffraction or

for electronic transport suited to the self-similarity shown by

quasicrystals (Janot, 1996; Baake & Moody, 2000). In fact, an

appealing mathematical program, combining number theory,

free groups and semi-groups, measure theory and harmonic

analysis, has been developing strongly for the past 25 years.

One of these mathematical approaches is based on the

concepts of �-integer and �-lattice, where �> 1 can be equal

to one of the following quadratic algebraic numbers:

� ¼ ð1þ 51=2
Þ=2 (for five and tenfold symmetry),

� ¼ 1þ 21=2 ¼ 1þ 2 cosð2�=8Þ (for octagonal symmetry) and

� ¼ 2þ 31=2 ¼ 2þ 2 cosð2�=12Þ (for dodecagonal symmetry).

Each such � determines a discrete set of the line, Z�, the set of

�-integers (Burdı́k et al., 1998), which play the role of integers

in the study of quasicrystalline structures. �-Lattices are based

on �-integers in the same way as lattices are based on integers:

� ¼
Pd
i¼1

Z�ei;

with ðeiÞ a base of Rd. In specific situations, decorated versionseZZ� ¼ Z� + finite set F will be used instead. These (decorated)

�-lattices are eligible frames in which one could think of the

properties of quasiperiodic point sets and tilings, thus gener-

alizing the notion of lattice in periodic cases.

In this paper we present a new method for analyzing the

pure point parts (Bragg peaks) of diffraction patterns for

aperiodic point sets supported by �-lattices. The method rests

upon the counting framework provided by �-integers and

�-lattices and their self-similarity property,

�Z� � Z�; ! �� � �:

This property allows one to consider the infinite nested

sequence

. . . � �=� j�1
� �=� j

� �=� jþ1
� . . . ; ð1Þ

as a multiresolution filter for the point set we have to examine.

The term multiresolution is borrowed from discrete wavelet

analysis (Mallat, 1989), in which analogous sequences of

scaled discretizations of the real line and related sequences of

Hilbert spaces yield an efficient filter for analyzing signals.

Multiresolution sequences [equation (1)] allow one to build

‘catalogues’ of diffraction patterns for standard or manageable

well identified site-occupation distributions. We would like to

introduce the idea of a sort of identity card for the diffraction

pattern of a quasiperiodic set. Having at our disposal such

catalogues of ‘diffraction fingerprints’, one can then examine

experimental diffraction patterns – those displayed by real

quasicrystals or other more or less exotic structures. The next

step should be a (patient!) labor of comparison, classification

and identification. However, we do not investigate the

(difficult) question of complete determination of the real

structure, related to some extent to the homometry problem,

and we do not examine the Patterson function either.

This article is organized as follows. In x2 we give the

necessary preliminaries to this work, namely the mathematical

expressions defining diffraction patterns of point sets, and the

definitions of algebraic cyclotomic rings, which are dense point

sets supporting Bragg peaks of the structures considered.

Appendix A presents relevant mathematical definitions and

properties, particularly those concerning the aforementioned



three scaling factors appearing in observed quasicrystals. In x3

we introduce the �-lattices whose construction is based on the

numeration system associated with the number �> 1 and its

corresponding set of �-integers. Mathematical explanations

are found in Appendices B and C. We then show how to

describe the above cyclotomic rings as limits of nested

sequences of inflated/deflated versions of �-lattices. This

notion of limit should here be accepted in the following sense.

Definition 1. Let � be a dense set and ð�jÞj2Z a nested

sequence of Delone (Delaunay) sets such that

. . . � �j�1 � �j � �jþ1 � . . . � �:

One says that � is the (inductive) limit of the sequence ð�jÞj2Z
if, for all x 2 �, there exists a j 2 Z such that x 2 �j, i.e. if � is

equal to the countable union of the ð�jÞ’s:

� ¼
[
j2Z

�j:

The cut-and-project sets, i.e. projections of strips (with

irrational directions) of higher-dimensional lattices, have

become standard models for quasicrystals. We show in x4 to

what extent they can be considered as subsets of our �-lattices,

and this naturally leads to the notion of weighted Dirac

measures supported by �-lattices. We present in x5 the general

framework of our multiresolution analysis of Bragg-peak sets

through nested sequences of �-lattices, and the precise

description of its implementation is given in x6, more precisely

in relation with the indexation of Bragg peaks. The detailed

results of our numerical investigations are presented in x7. We

first analyze academic models, such as the diffraction patterns

of �-lattices themselves or of simple cut-and-project sets

embedded in these �-lattices, like those with pentagonal or

decagonal symmetries. We also examine more elaborate cut-

and-project sets like the set of vertices of Penrose tilings. We

then turn our attention to a point set closer to realistic models

for an experimental AlCuCo quasicrystal, namely the Steurer

and Kuo model. In conclusion, we discuss the presented

results, emphasizing what we consider as promising directions

or developments in the future.

Concerning the mathematical material needed for under-

standing our approach, we have attempted to minimize the

amount of technical details within the main body of the paper.

The aim of the appendices is to provide readers unfamiliar

with these objects with enough definitions and properties to

understand our approach.

2. Diffraction spectra and cyclotomic rings

Let � be a discrete set of points in Rd, and suppose that the

diffraction spectrum of � admits a pure point part. In reci-

procal space, the function giving the intensity per diffracting

site is the limit

IðkÞ � Ik ¼ lim
L!1

cL
k

�� ��2 ; ð2Þ

where �L is the restriction of � on a d-dimensional

ball of radius L (or equivalently a d-dimensional cube

of side L) centered at the origin, and cL
k ¼

½1=Cardð�LÞ�
P

�2�L
expð�ik�Þ is the Fourier coefficient of �

in an average sense for the wavevector k. It has been known

since Hof (1995) and Schlottmann (1998, 2000) that if � is a

cut-and-project set, its diffraction measure, i.e. the Fourier

transform of its unique autocorrelation measure, is pure point,

and is well described by the above formula, which reads as the

distribution

I ¼
P

k2��
Ik�k;

where �k is the Dirac delta function at k. The set �� � Rd is

the support of all Bragg peaks in the diffraction spectrum, and

is generically dense in reciprocal space. We can say with some

abuse of terminology that �� is the reciprocal lattice of �. A

Bragg peak is then defined by the weighted Dirac measure

Ik�k. In this article we will rather employ the following nota-

tion, combining intensity with geometry, for designating a

Bragg peak:

p ¼ ðk; IkÞ:

Denote by I the range of intensities of Bragg peaks. Of

course, I is bounded. Then the Bragg spectrum, or pure point

spectrum, of a diffractive structure is the graph of the map

k 7! Ik, i.e.

� ¼ fp ¼ ðk; IkÞ j k 2 ��; Ik 2 Ig � �� � I : ð3Þ

(It might happen in the following that index k is dropped for

conciseness). There exists a maximal intensity, Imax ¼ maxðIÞ.

This maximum is determined by experimental data and

provides the whole spectrum with a natural unit. All points

supporting Imax are symmetry centers for �� with (at least)

respect to space inversion.

Example 1. Suppose � is a point set representing some cubic

monoatomic crystal, then �� ¼ Z3 and I ¼ fI0 ¼ Imaxg.

Hence � ¼ fp ¼ ðn1; n2; n3Þ; I0ð Þ j ni 2 Zg is the diffraction

spectrum of such a structure. More elaborate periodic pure

point diffraction spectra are obtained from decorated lattices

of this type.

Example 2. A less trivial example is provided by the diffrac-

tion spectrum of the set of vertices of a Penrose tiling. The

support of the diffraction spectrum (in suitable units) is

then the dense point set of the cyclotomic integers

Z exp½ið�=5Þ�½ � ¼
P4

q¼0 Z exp½iqð�=5Þ� (see Appendix A), the

range of intensities is the set I ¼ ð0; Imax�, and there exists one

and only one point supporting Imax.

In the following we will restrict ourselves to the study of

two-dimensional structures, and will then adopt complex

notations. In certain situations for which a point set � � C
admits some (at least local) rotational symmetry of order N,

the reciprocal lattice of � is given by �� ¼ �Z½	�, where � is

some scaling factor we shall discard in the following, and

where Z½	� is the cyclotomic extension ring of the Nth root of

unity 	 ¼ expði2�=NÞ given by
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Z½	� ¼
PN�1

q¼0

Z	q ¼ Z½2 cosð2�=NÞ� þ Z½2 cosð2�=NÞ�	:

The set

Z½
 � 2 cosð2�=NÞ�

¼
def
fm1 þm2
þ . . .þmqN


qN�1
j m1;m2; . . . ;mqN

2 Zg

is defined as the extension ring on the integers of the algebraic

integer 2 cosð2�=NÞ, with qN the degree of its minimal poly-

nomial.

The set Z½	� is generically dense in C, except for crystal-

lographic cases: 2 cosð2�=NÞ 2 N if and only if N = 1, 2, 3, 4 or

6. If this condition is satisfied then Z½	� is a discrete periodic

subset of the complex plane. More details on definitions and

properties are given in Appendix A.

In the noncrystallographic cases, we will focus on a class of

numbers called cyclotomic Pisot–Vijayaraghavan (PV)

numbers, as they appear naturally in quasicrystallographic

systems (Barache et al., 1998). PV numbers are defined in

Appendix A. We need to discriminate between the two cases

in which the constant term in their minimal polynomial is �1

or 1. The notations in the following list of quasicrystallo-

graphic PV numbers (together with their minimal polynomial)

will be kept throughout the rest of the article.

Notation 1. If � is a quadratic Pisot number, then we denote by

�0 its Galois conjugate, i.e. the other root of the minimal

polynomial associated with �.

Case 1:

N ¼ 5; 10: � ¼ ð1þ 51=2
Þ=2 ¼ 1þ 2 cosð2�=5Þ

¼ 2 cosð2�=10Þ;

�0 ¼ �1=�; X2
� X � 1: ð4Þ

N ¼ 8: � ¼ 1þ 21=2 ¼ 1þ 2 cosð�=4Þ;

�0 ¼ �1=�; X2
� 2X � 1: ð5Þ

Case 2:

N ¼ 5; 10: � ¼ �2
¼ ð3þ 51=2

Þ=2 ¼ 2þ 2 cosð2�=5Þ

¼ 1þ 2 cosð2�=10Þ;

� 0 ¼ 1=�; X2 � 3X þ 1: ð6Þ

N ¼ 12: � ¼ 2þ 31=2
¼ 2þ 2 cosð�=6Þ;

�0 ¼ 1=�; X2
� 4X þ 1: ð7Þ

Note that in the case N ¼ 7, we have � ¼ 1þ 2 cosð2�=7Þ,

which is a solution to the cubic equation X3�

2X2 � X þ 1 ¼ 0, but which has not yet been really encoun-

tered in stable structures.

3. b-Lattice sequences converging to cyclotomic rings

Let � be an aperiodic crystal for which the inflation properties

are governed by an algebraic number �. The �-lattices

constitute an underlying structure, allowing one to somehow

partially recover the description one would have if � were a

periodic crystal (Burdı́k et al., 1998; Elkharrat et al., 2004). In

this section we introduce the notion of a �-lattice, together

with the partition of cyclotomic rings it generates.

3.1. b-Lattices

Roughly speaking, given �> 1, �-integers are all numbers

that are polynomial when written in base �. They form the

countable point set Z� � R. They are to �-lattices what inte-

gers Z are to lattices. Mathematical definitions and properties

are given in Appendix B. When N is quasicrystallographic, i.e.

N = 5, 10, 8 or 12, respectively associated with one of the

numbers � ¼ �, � and �, the corresponding sets Z� enjoy

remarkable properties (Burdı́k et al., 1998). We then adopt the

generic name �-lattice for higher-dimensional point sets of the

form

�� ¼
Pd
i¼1

Z�ei

with ðeiÞ1	i	d a basis of Rd. By construction, this set is self-

similar and symmetrical with respect to the origin:

��� � ��; �� ¼ ���: ð8Þ

We now focus on the following two-dimensional �-lattices.

Case 1:

�� ¼ Z� þ Z�	

with 	 ¼ exp½ið2�=10Þ� for � ¼ � and 	 ¼ exp½ið2�=8Þ� for

� ¼ �.
Case 2:

One needs to work with decorated �-lattices involving the

decorated �-integers eZZ� ¼ Z� þ f0;
1=�g. The latter are

described in Appendix C.e��� ¼ eZZ� þeZZ�	
with 	 ¼ exp½ið2�=10Þ� or 	 ¼ exp½ið2�=5Þ� for � ¼ �, and

	 ¼ exp½ið2�=12Þ� for � ¼ �.
It should be noticed at this point that these �-lattices are

endowed with rich arithmetic and algebraic properties [details

are given in Elkharrat et al. (2004) and references therein].

Although the sets �� are not rotationally invariant, they

contain after suitable rescaling or decoration rotationally

invariant sets like cut-and-project sets (see x4) with a rota-

tionally invariant window, or sets like [N�1
q¼0 ��	

q andPN�1
q¼0 Z�	

qwith N = 8, 10 or 12, respectively. This results from

the following inclusions for q ¼ 1; 2; . . . ;N � 1:

	q�� �
��
�2
; 	q�� �

��
�3
; 	q�� �

ee��e��ð�Þ � eeZZeZZ� þeeZZeZZ�	; ð9Þ
where

eeZZeZZ� ¼ Z� þ f0;
1=�;
2=�g.
In order to give explicit results for the limit of nested

sequences of scaled/decorated versions of �-lattices, we need

to deal with the image of �-lattices through Galois conjuga-

tion, i.e. the image of �-lattices in internal space. Hence, it is

possible to extend Galois conjugation and related properties

given in Appendix C [see equation (34) and following equa-

tions] to two-dimensional structures (Moody & Patera, 1994),
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z ¼ mþ n�þ ðpþ q�Þ	 7! z0 ¼ mþ n�0 þ ðpþ q�0Þ	r;

where r ¼ 3 for � ¼ �, � and �, and r ¼ 5 for � ¼ �. Let R�

denote the rhomboid convex hulls given by

R� ¼ ½�1; 1� þ ½�1; 1�	 ðcase 1Þ;

R� ¼ ½��; �� þ ½��; ��	 ðcase 2Þ:

Then we derive from equations (35) and (36) the following

characterizations of internal spaces:

Z½	� \ R� ¼ ð��Þ
0
\ R� ðcase 1Þ; ð10Þ

Z½	� \ R� ¼ ð
e���Þ0 \ R� ðcase 2Þ: ð11Þ

More prosaically, any element of the dense cyclotomic ring

Z½	� lying within the domain R� is the conjugate of an element

of the discrete set �� (respectively e���). In Figs. 1, 2 and 3 we

display the �-lattice ��, the �-lattice �� and the decorated �-
lattice,e���, respectively, all three as point sets and as tilings. We

also show their respective internal spaces.

3.2. Nested sequences of b-lattices

In Appendix C we prove the following decompositions of

the extension rings Z½�� for quasicrystalline �.

Case 1:

lim
j!1

Z�=�
j

� �
¼
[
j2Z

Z�=�
j

� �
¼ Z½��: ð12Þ

Case 2:

lim
j!1

eZZ�=� j
� �

¼
[
j2Z

eZZ�=� j
� �

¼ Z½��; ð13Þ

where eZZ� ¼ Z� þ f0;
1=�g.
Note that in both cases we have\

j2Z

ðZ�=�
j
Þ ¼ f0g;

[
j2Z

ðZ�=�
jÞ ¼ R:

The resulting decompositions of the two-dimensional cases are

then straightforward. In cases 1 and 2 we introduce the

following notation.

Gj ¼
��=�

j ðcase 1Þe���=� j ðcase 2Þ

�
and the sequence ðGjÞj2Z has the nested self-similarity

. . . � Gj�1 � Gj � Gjþ1 � . . . � Z½	� ð14Þ

with j 2 Z. In the internal space, we deduce from equations

(10) and (11) that
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Figure 1
The �-lattice ��, � ¼ ð1þ 51=2

Þ=2, with points (top left), and its trivial tiling made by joining points along the horizontal axis and along the direction
defined by 	 (top right). The set (Galois-)conjugate to �� is shown below.
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Figure 3
The decorated �-lattice e���, � ¼ 2þ 31=2, with points (top left), and its trivial tiling obtained by joining points along the horizontal axis and along the
direction defined by 	 (top right). The set (Galois-)conjugate to �� is shown below.

Figure 2
The �-lattice ��, � ¼ 1þ 21=2, with points (top left), and its trivial tiling obtained by joining points along the horizontal axis and along the direction
defined by 	 (top right). The set (Galois-)conjugate to ��, i.e. its image in the ‘internal’ space, is shown below.



Z½	� \ � jR� ¼ G
0

j \ �
jR�;

leading to

lim
j!1
Gj ¼ Z½	�: ð15Þ

4. Cut-and-project sets and b-lattices

4.1. Algebraic filtering through b-lattices

Let us explore the details of the algebraic filtering algo-

rithm, or algebraic sieving, used to construct an aperiodic set.

Such an algorithm was introduced by de Bruijn (1981a,b) and

was nicely applied by Moody & Patera (1994). It is the alge-

braic version of the cut-and-project method. This method was

applied to the construction of cut-and-project sets on

�-lattices by Barache et al. (1998).

The filtering procedure, possibly involving a ‘phason’ shift

� 2 C, reads

��
� ¼ fz 2 Z½	� j z

0
�� 2 �g ð16Þ

¼ Z½	� \ ð�þ�Þð Þ
0; ð17Þ

where �, a bounded subset of the plane, is the acceptance

window of ��
�. In the present article we study the diffraction

patterns of aperiodic sets that are left invariant under the

phasonic transforms � (Levine & Steinhardt, 1986). We shall

then omit such transforms in the following. It follows from

equations (10) and (11) that, for any � � R�, the associated

model set �� is a subset of G0.

There is an extensive literature on cut-and-project sets (also

called model sets) and on their relation with their windows

[see Moody (1997) for an overview]. The local symmetries of

cut-and-project sets are closely related to the symmetries of

their windows �. For example, for � ¼ �, when � is a

pentagon, the resulting model set admits local pentagonal

symmetries. We shall then speak of a pentagonal set and so on.

Recall at this point that one needs to sieve through specific

�-lattices in order to obtain sets of given symmetries. Namely:

(i) pentagonal, decagonal and Penrose sets are sieved

through �-lattices and �-lattices,

(ii) octagonal sets are sieved through �-lattices, and

(iii) dodecagonal sets are sieved through �-lattices.

The algebraic construction of (standard or singular)

Penrose point sets is described in Appendix D.

4.2. Weighted Dirac measures supported by b-lattices

We now consider the weighted Dirac measure � on ��,

� ¼
P

z2��

wðzÞ�z:

The notion of measure with support in a �-lattice �� is

particularly convenient, since by properly choosing the weight

function we can construct any kind of aperiodic set supported

by ��, particularly those sets which have quasicrystalline (QC)

rotational symmetry. In this section we introduce the various

weight functions that were used to perform this study.

4.2.1. Cut-and-project sets. Let �� be a model set

embedded in ��. The weight function defined on �� is given

by

wðzÞ ¼ 1; z0 2 �
wðzÞ ¼ 0; z0 =2�

�
for all z 2 ��. It appears that for model sets we can abusively

assert that the weight function in the physical space is the

‘Galois conjugate’ of the characteristic function of the window

� in the internal space.

4.2.2. Functional window set. Let ’ : R2
7! ½0; 1� be a

rapidly decreasing function centered at the origin. Define the

weight function w of the weighted set �’, with slight misuse of

notation, supported by ��, by

wðzÞ ¼ ’ðz0Þ

for all z 2 ��. This is a quite direct generalization of the notion

of a window, where the weight function of the set is tradi-

tionally the characteristic function of the window.

For example, if ’ is the Gaussian function expð�jzj2=
2Þ,

the weight function is then

wðzÞ ¼ exp½�ðjz0j=
Þ2�:

We can further combine the characteristics of a model set ��

and a functional windowed set by truncating the function ’
along the edges of the window �. If �� is the characteristic

function of �, the window is then ’�� and the set is denoted

�’�� .

4.2.3. Random window set. We now consider aperiodic sets

admitting disorder. The principle of the method used here is to

translate the window randomly during the filtering algorithm

of the �-lattice, i.e. every time we test whether the conjugate z0

of a particular point z 2 �� is in or out of the window �, the

latter is randomly translated. We could imagine that this

model is the consequence of some thermal disorder. Concre-

tely, this method generates aperiodic sets admitting uncorre-

lated phasons.

Let � 2 C, and let �ð�Þ be the set given by

�ð�Þ ¼ �þ� ¼ fu 2 C j uþ� 2 �g

with � � C a bounded set. If we let � assume random values

such that j�j 2 ½0; j�maxj� during the filtering algorithm, the

weight function of the aperiodic set ��ð�Þ is given by

wðzÞ ¼ 1; z0 2 �ð�Þ
wðzÞ ¼ 0; z0 =2�ð�Þ:

�
We can randomize functional windowed sets as well by

defining the weight function of the sets �’ by

wðzÞ ¼ ’ðz0 ��Þ

with � assuming random values such that j�j 2 ½0; j�maxj�

during the filtering algorithm.

In Fig. 4 we display a random set built from a randomly

translated decagonal window during the sieving algorithm.
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5. Multiresolution analysis through b-lattices: general
framework

Suppose that the pure point diffraction spectrum � of a

quasicrystal is supported by the (dense) point set �� and the

latter is the inductive limit of the nested sequence

. . . � Gj�1 � Gj � Gjþ1 � . . .!
ind

��: ð18Þ

Let us consider the diffraction spectrum �ðXÞ � �, with a

cutoff X > 0, given by

�ðXÞ ¼ fp ¼ ðx; IxÞ 2 � j Ix � Xg:

It immediately follows from this definition that the set-valued

function X 7!�ðXÞ is ‘decreasing’ in the sense

X � Y ) �ðXÞ � �ðYÞ

until reaching the empty set value

X > Imax ) �ðXÞ ¼ f;g:

Moreover, recall that when the diffractive structure is a cut-

and-project set, which is the basic model of a quasicrystalline

structure, then the set �ðXÞ is supported by another cut-and-

project set (Meyer, 1995). Thus, it is fairly reasonable for both

the mathematical models and the physical structures to

assume (within the context of the present paper based on the

quadratic cyclotomic PV units) that for any X 2 I there exists

j 2 Z such that �ðXÞ has its support included in the point set

Gj. Supported means that for any pair ðx; IxÞ 2 �ðXÞ, the

spatial component x belongs to Gj, and we shall write

Suppð�ðXÞÞ � Gj;

where, in general, the inclusion is strict. In order to convince

the reader further of the suitability of �-lattices for reading

diffraction patterns, we show in Fig. 5 the embedding of an

experimental diffraction pattern into a �-lattice. Note that this

embedding was almost immediate.

Now we assume that to any j 2 Z there corresponds a

positive real number Xj defined by

Xj ¼ minfX j Suppð�ðXÞÞ � Gjg: ð19Þ

In other words, if X � Xj, then Suppð�ðXÞÞ � Gj, whereas if

X <Xj, then there exists a p ¼ ðx; IxÞ 2 �ðXÞ such that

x ¼ xðpÞ =2Gj. Again, this minimum is determined experi-

mentally, since in practical implementation we deal with finite

samples.

We are now in a position to introduce two partitions of the

pure point diffraction pattern �, induced by the nested

sequence ðGjÞj2Z. We shall indeed use ðGjÞj2Z as a multi-

resolving filter. Denote by P0 and by G0 the sets

P0 ¼ �ðX0Þ;

G0 ¼ fp ¼ ðx; IxÞ 2 � j x 2 G0g:

The set G0 is the set of Bragg peaks supported by G0, whereas

P0 is the set of Bragg peaks supported by G0 of intensity

greater than (or equal to) the cutoff X0, as defined in equation

(19). In the same fashion denote by P1 and by G1 the sets

P1 ¼ �ðX1Þ;

G1 ¼ fp ¼ ðx; IxÞ 2 � j x 2 G1g:
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Figure 4
A ‘decagonal’ random set: in physical space (above) and in internal space
(below).

Figure 5
A monochromatic X-ray diffraction pattern (Al63Cu17.5Co17.5Si2, synchro-
tron LURE, Orsay) embedded in a �-lattice at a suitable scale and
orientation.



We obviously have P0 � P1 and G0 � G1. From here, we

extend the decomposition to all i; j 2 Z, ðPiÞi2Z and ðGjÞj2Z as

Pi ¼ �ðXiÞ; ð20Þ

Gj ¼ fp ¼ ðx; IxÞ 2 � j x 2 Gjg ð21Þ

obeying

. . . � Pi�1 � Pi � Piþ1 � . . . � �;

. . . � Gj�1 � Gj � Gjþ1 � . . . � �:

Clearly, both increasing sequences have the pure point

diffraction pattern as the inductive limit[
i2Z

Pi ¼ �;[
j2Z

Gj ¼ �:

Remark 1. Note that the decomposition of � generated by the

sequence ðGjÞj2Z depends only on the geometrical discrete

approximations to the ring Z½	�, i.e. the support of �, provided

by the sequence ðGjÞj2Z. On the other hand, the decomposition

of � generated by the sequence ðPiÞi2Z combines both

geometrical and intensity features.

Denote now by DP
1 the complement of P0 in P1, and by DG

1

the complement of G0 in G1:

DP
1 ¼ P1 n P0

¼ fp ¼ ðx; IxÞ 2 � j X1 	 Ix <X0g;

DG
1 ¼ G1 nG0

¼ fp ¼ ðx; IxÞ 2 � j x 2 G1 n G0g:

More generally, the complement of Pi in Piþ1 and the

complement of Gj in Gjþ1 are given by

DP
iþ1 ¼ fp ¼ ðx; IxÞ 2 � j Xiþ1 	 Ix <Xig;

DG
jþ1 ¼ fp ¼ ðx; IxÞ 2 � j x 2 Gjþ1 n Gjg:

Of course we have

Piþ1 ¼ Pi [DP
iþ1;

Gjþ1 ¼ Gj [DG
jþ1:

Remark 2. In the language of wavelets and multiresolution

analysis, the sets Pi and Gj are referred to as the tendency at

scale i and j, respectively, and the sets DP
iþ1 and DG

jþ1 as the sets

of details.

Iterating the above equations we obtain

Pi ¼
[i

l¼�1

DP
l ; ð22Þ

Gj ¼
[j

k¼�1

DG
k : ð23Þ

Hence we get, at the limit, two distinct partitions of the pure

point diffraction spectrum,

� ¼
[1

i¼�1

DP
i ; ð24Þ

� ¼
[1

j¼�1

DG
j : ð25Þ

These two partitions are not identical and each one presents

its own advantages in carrying out a classification of the Bragg

peaks based on multiresolution. Let us profit from their

coupled existence to refine this multiresolution procedure.

The refinement is just based on the intersection of the two

partitions. More precisely, we have the following resulting

partition of the pure point diffraction spectrum:

� ¼
[1

i;j¼�1

Ri;j ð26Þ

with

Ri;j ¼ DP
i \DG

j

¼ fp ¼ ðx; IxÞ 2 � j x 2 Gj n Gj�1; Xi 	 Ix <Xi�1g:

6. Multiresolution analysis through b-lattices:
implementation

After this quite formal description of the partition of an

aperiodic set diffraction pattern, we wish to implement this

partition in order to analyze and to classify various structures.

In this section we give guidelines for diffraction-pattern

analysis through equations (26) and the equations below, using

�-lattices. Our (numerical) explorations have an essentially

pragmatic and illustrative character.

6.1. Approximations and computation

Denote by � an aperiodic set and by � the weighted Dirac

measure it supports, � ¼
P

�2� wð�Þ��. We would like to

analyze the function given by equation (2). We are then led to

compute

I
ðLÞ
k ¼ ½1=Cardð�LÞ�

P
�2�L

wð�Þ expðik�Þ

�����
�����

2

:

Recall that �L is the restriction of � to a disc of radius L or

some other bounded region of linear size L. When L is large

enough, this approximation is relevant to the analysis of the

diffraction pattern of �. We now need to determine the

support of I
ðLÞ
k , i.e., the set of wavevectors k on which we

compute I
ðLÞ
k . Ideally this support should be, up to a scaling

factor, the dense cyclotomic ring Z½	� in the context of the

present study, but we need to take an approximation of Z½	�.
This approximation is naturally given by a dense enough

�-lattice GJ, for a finite fixed J (see below), which is embedded

in Z½	�. Once again, if J is large enough, we consider this

approximation relevant for our purpose. Hence we can

consider as a good approximation the computation of the

finitely supported distribution
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I
ðMÞ
J ¼

P
k2G

ðMÞ
J

I
ðLÞ
k �k;

which is the restriction of the Fourier transform of the auto-

correlation measure of � to G
ðMÞ
J , where G

ðMÞ
J denotes the

restriction of the �-lattice GJ to the disc of radius M.

Switching to the notations we have adopted in this article,

we see that I
ðMÞ
J ðkÞ is equivalent to the set �ðMÞJ ¼

fp ¼ ðk; IkÞ 2 � j k 2 G
ðMÞ
J g. We then choose a cutoff � such

that we discard all Bragg peaks of intensity smaller than �.
Eventually we obtain the set

�ðMÞJ ð�Þ ¼ fp ¼ ðk; IkÞ 2 � j k 2 G
ðMÞ
J ; Ik � �g ð27Þ

of Bragg peaks supported by G
ðMÞ
J and of intensities greater

than or equal to �. In summary, after fixing the quadruple

ðL; J;M; �Þ of approximation parameters, we consider the set

�ðMÞJ ð�Þ, or �ð�Þ for short, as the kind of realistic diffraction

pattern one would obtain through experiment or traditional

numerical computation, such as the one in Fig. 5.

6.2. The question of orientation of b-lattices

One important point has to be made precise here about the

choice of orientation in the plane for the �-lattices Gj of the

multiresolution sequence (actually, the choice for one of

them), besides the fact that all of them are centered at the

peak of maximal intensity. For the diffraction pattern of

mathematical structures (�-lattices and their subsets obtained

through the cut-and-project method, or variants of it, such as a

Penrose set), the choice of orientation is determined by the

original structure, as defined algebraically. For the Fourier

transform of such a set, we represent Bragg peaks as they are

determined by their computed coordinates in the plane. For

experimental patterns, like the one in Fig. 5, two parameters of

the quadruple ðL; J;M; �Þ are immediately fixed by the size M

of the pattern and the cutoff � determined by the distin-

guishable appearance of the peaks of weakest intensity. So the

first task is to adjust simultaneously the scale J and the

orientation, say �, in order to include all the peaks (or at least

the maximum number of peaks) into the set of nodes of the

corresponding G
ðMÞ
J ð�Þ. If, by chance, there are several such �’s,

the multiresolution analysis should be carried out for each of

them, in order to provide the structure with as many finger-

prints indexed by possible orientations, since the aim is to

make the diffracting structure enter into a classification

scheme and possibly guess the geometrical organization of it

by comparison with the diffraction ‘fingerprints’ of mathe-

matical models.

6.3. b-Lattice indexation of Bragg peaks

Before we go into the partitions of �ð�Þ, we would like to

index all Bragg peaks of �ð�Þ. Recall that the cut-and-project-

based method for Bragg-peak indexation makes use of as

many Miller integer indices as there are dimensions in the

higher-dimensional space. In order to index a Bragg peak in,

say, a two-dimensional structure, we need four Miller indices

when the Pisot number involved in the structure is quadratic.

On the other hand, �-lattices offer an original indexing

method, which allows only three integer indices to be used.

Note, however, that both methods are equivalent.

The scale J is fixed such that G
ðMÞ
0 supports only the central

Bragg peak in the restriction of the diffraction pattern on the

disc of radius M. A Bragg peak p ¼ ðk; IkÞ is indexed by

p ¼ ðk; IkÞ $ ð1=jÞ � ðm; nÞ;

where m and n are the indices of the mth and nth �-integers,

bm and bn, and where j is the scale of the �-lattice G
ðMÞ
j ,

j ¼ 0; . . . ; J, at which this peak first appears. This means that k

reads as

k ¼ ðbm þ bn	Þ=�
j;

supposing that either bm=�
j or bn=�

j is irreducible as a ratio,

i.e. both cannot be written as b0m=�
j�1 and b0n=�

j�1. In other

words, ðm; nÞ=j are the integer coordinates of k on the grid Gj

of first appearance, i.e. the position of the node which supports

p in the numeration system defined by Z� (or a decorated

version of it):

Gj ¼ Z�=�
j
þ ðZ�=�

j
Þ	; k =2Gj�1:

In Fig. 6, we represent ten Bragg peaks from the diffraction

pattern of a decagonal structure (see below). The peaks are

indexed as shown in Table 1.

Remark 3. The link between traditional indexing methods and

the one we propose here is immediate. In standard quasi-

crystallographic methods, for two-dimensional structures, a

Bragg peak is indexed by four integers ðq; r; s; tÞ 2 Z4, corre-

sponding to its coordinates in the four-dimensional lattice

within the cut-and-project framework, and we have

k ¼ qþ r�þ ðsþ t�Þ	:

�-Lattice formalism allows one to use only three integers to

enclose information on the geometric localization, from the

relations

qþ r� ¼ bm=�
j; sþ t� ¼ bn=�

j:

Remark 4. Furthermore, self-similar properties of �-lattices,

Gj�1 � Gj � Gjþ1, allow one to get information on the set of

wavevectors in a hierarchical way, depending on j.

6.4. Partitions of diffraction patterns

We now come to the two partitions of the diffraction

pattern. The first reads

�ð�Þ ¼ P0 [
[J

i¼1

DP
i

 !
;

where we have fixed

DP
J ¼ fpðk; IkÞ 2 �ð�Þ j � 	 Ik <XJ�1g:

The second reads
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�ð�Þ ¼ G0 [
[J

j¼1

DG
j

 !
;

where we have fixed

DG
J ¼ fpðk; IkÞ 2 �ð�Þ j k 2 Gj n Gj�1; Ik � �g:

Note that, by convention, we put

P0 ¼ G0 ¼ fpðk; IkÞ j k ¼ ð0; 0Þ; Ik ¼ 1g:

Eventually we obtain the partition

�ð�Þ ¼ P0 [
[J

i;j¼1

Ri;j

 !
;

¼ P0 [
[J

i;j¼1

DP
i \DG

j

 !
:

Remark 5. Practically, most of the Ri;j are empty, as we shall

see in the numerical examples. Each sequence ðRi;jÞ0	i;j	J is

characteristic of a class of diffractive structures. Hence the

determination of the sequences ði; jÞ allows one to discrimi-

nate those classes of diffractive structures.

7. Numerical examples

We now implement the multiresolution analysis described

above. As a first test of our method, we will restrict the trial to

the fivefold and tenfold symmetries (for which � or one of its

powers only are involved as an inflation factor). We first apply

our procedure to academic cases, in which the diffraction

spectra are those of �-lattices or simple model sets defined by

symmetric windows or randomly defined windows. Note that

for certain of these mathematical models there exist exact

formulae for the diffraction intensity (Gazeau & Verger-

Gaugry, 2006). Nevertheless, we prefer here to stick to our

‘experimental’ approach for pedagogical and teaching reasons.

The last section (x7.6) will be devoted to multiresolution

analysis of the diffraction pattern of a QC model that has been

established on experimental grounds (Steurer & Kuo,

1990a,b).

For each one of these spectra, we tabulate in Tables 2 to 12

the values assumed by jRi;jj � CardðRi;jÞ for 1 	 i; j 	 J. The

value 1 corresponding to the central Bragg peak of maximal

intensity, Imax ¼ 1, is also displayed in the top left corner,

indexed by i ¼ 0; j ¼ 0.

Each sequence ðRi;jÞ0	i;j	J seems to be characteristic of a

class of diffracting structures. Two-dimensional diffraction

patterns can then be sorted into three general categories,

depending on their similarities with the diffraction patterns of

(1) a �-lattice, (2) a decagonal model set or (3) a Penrose set.

This gives us a first overview of aperiodic structures and

their classification.

In addition to the tables and for each i we show figures of

the corresponding diffraction pattern �ðXiÞ, with different
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Figure 6
Ten Bragg peaks from the diffraction pattern of a decagonal structure.
Above: the grid G1, in which only two peaks lie on nodes of the grid
corresponding to j ¼ 1; these two peaks are indexed by ð�1; 1Þ=1 and
ð1;�1Þ=1. Below: the grid G2, in which we can embed the eight other
peaks ð1; 0Þ=2, ð�1; 0Þ=2; . . .. Notice how the original tenfold symmetry is
first reduced to a twofold symmetry before being restored.

Table 1
Indexed Bragg peaks in Fig. 6.

Intensity m n j

0.983761 1 �1 1
0.983761 �1 1 1
0.983761 1 0 2
0.983761 0 1 2
0.983761 �1 2 2
0.983761 �2 1 2
0.983761 �1 0 2
0.983761 0 �1 2
0.983761 1 �2 2
0.983761 2 �1 2



colors to help distinguish items belonging to elementary boxes

Ri;j. Each figure is accompanied by its internal space coun-

terpart.

7.1. The s-lattice Cs

We start our investigation of aperiodic sets with the

diffraction-pattern analysis of the �-lattice, �� . In Fig. 7, we

display the diffraction pattern �M
J ð�Þ. Note that the set of

Bragg peaks ‘rebuilds’ the �-lattice. This interesting fact

appears more clearly in the internal space, where peaks place

themselves uniformly within the convex hull �7R� .

In Table 2 we display all Bragg peaks arising from the

diffraction pattern of the structure, depending on their

intensity and their scale. Recall that the set Ri;j is the set of

Bragg peaks whose intensities lie within Xi 	 I<Xi�1, and the

positions of which belong to the grid Gj without belonging to

the grid Gj�1. Table 2 displays the number of diffraction peaks

which belong to each subset Ri;j. The rows are the intensities

Xi viewed as the minima of the finite samples considered. The

columns are the scales j of the grids Gj ¼ ��=�
j. In Figs. 8 and 9

we display the decomposition of the �-lattice diffraction

pattern in both physical space and internal space. For each set

Ri;j, the peaks that belong to all lower-indexed sets

Ri�1;j�1;Ri�2;j�2; . . . down to R0;0 are represented by open

circles. If two or more new sets are represented in the same

figure, e.g. R5;4 and R5;5 in the lower part of Fig. 9, they are

distinguished by different colors. Note that Bragg peaks

progressively appear in clusters showing rotational symme-

tries (e.g. twofold, then tenfold . . . ) at each step of this

decreasing intensity process, despite the non-rotational

invariance of the successive supports ��=�
j. This important

feature will occur again in all other explorations shown below.

7.2. Gaussian window set

This isotropic set is sieved on �� through the weight func-

tion

wðzÞ ¼ ’ðz0Þ ¼ exp½�ðjz0j=
Þ2�;

where 
 ¼ 1=�. This means that the standard deviation of the

Gaussian is chosen such that there is practically no truncation

effect, see x4.2.2:

�’
\ �� ’ �’

\ Z½	�:

We can even claim that it is ‘neutral’, in the sense that the

sieving effect on the �-lattice is not apparent.

The partition shown in Table 3 arises from the diffraction

pattern shown in Fig. 10. The observations resulting from this

example raise the question: why does an isotropic neutral set

have a diffraction pattern closely related to the diffraction

pattern of a �-lattice? One can conclude without any doubt

that the geometrical properties of both sets are closely related.

In fact, this observation supports the idea that �-lattices

might be accepted as an eligible universal frame in which we

can study the properties of aperiodic constructions with five-

fold or tenfold symmetries.
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Figure 7
The diffraction pattern of the �-lattice. Above: the physical space, along
with the grid G0; below: the corresponding image in the internal space,
along with the convex hull �7R� .

Table 2
Partition of the �-lattice.

j

Xi 0 1 2 3 4 5 6 7

X0 = 1 1
X1 = 0.970673 2
X2 = 0.924877 10
X3 = 0.814151 10
X4 = 0.642199 16
X5 = 0.300888 18 46
X6 = 0.046841 32 62
X7 = 0.02 2 32 12



7.3. Pentagonal and decagonal sets

Let us now turn to pentagonal and decagonal sets. They are

examined together because their diffraction patterns are

almost the same and can be included in the same category.

Note that blank entries or rows in Tables 4 and 5 correspond

to empty sets.

Once again, we have to go deep down into the intensities of

the peaks to notice that the two distributions of Bragg peaks

are different. Therefore, we may question the possibility of

distinguishing between the two structures experimentally

without a reference structure.

In Figs. 11 and 12, we show the partition of the diffraction

pattern of a pentagonal set.

7.4. Penrose set

Penrose sets are a particular class of aperiodic sets. This is

well illustrated by the fingerprint decompositions of their

diffraction patterns. Recall that a Penrose set is formed by the

union of four pentagonal sets. Each of these sets has a stan-

dard pentagonal set diffraction spectrum, like those just

explored in the previous section, but their union, i.e. the

Penrose set, does not.

In the following, we first give the partition of the diffraction

pattern of the Penrose set (see Fig. 13). Then, in order to

understand how the different constituent sets interact toge-

ther, we display two different versions with alternative weight

functions.

7.4.1. Diffraction of a Penrose set. Table 6 shows the

distribution of Bragg peaks according to the multiresolution

partition (Fig. 14). Note the four empty rows before reaching

the secondary peaks. We can distinguish two parts. In the array

we have a diagonal part and a horizontal part formed by the

subsets R8;1; . . . ;R8;5. The diagonal part reminds one of the

pentagonal diffraction-pattern partition (blank entries or rows

correspond to empty sets). We can show that, up to a �=10

rotation and a dilation, it is possible to embed the support of

PðX7Þ of the Penrose diffraction pattern into the pentagonal

diffraction pattern. On the other hand DPðX8Þ,

PðX8Þ ¼ PðX7Þ [DPðX8Þ, cannot be embedded in it. We thus

deduce that these two parts, i.e. PðX7Þ and DPðX8Þ, can be

interpreted as a reminiscence of the pentagonal diffraction

pattern and a set of satellite peaks.
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Figure 8
Partition of the �-lattice diffraction pattern: R1;1 (top) and R2;2 (bottom). On the right the corresponding images in internal space are shown.



7.4.2. Penrose sets with alternative weight functions. We

then chose to study two Penrose sets with different weight

functions. Recall that the window of the Penrose set is

composed of two small subwindows, �1 and �4, and two large

subwindows �2 and �3.

First weight function:

wð�1Þ ¼ 1; wð�2Þ ¼ 1=�; wð�3Þ ¼ 1=�; wð�4Þ ¼ 1:

This set gives rise to the partition shown in Table 7.

Second weight function:

wð�1Þ ¼ 1=�; wð�2Þ ¼ 1; wð�3Þ ¼ 1; wð�4Þ ¼ 1=�:

This set gives rise to the partition shown in Table 8.

In the first pattern, the partition is roughly the same as in

the standard Penrose set diffraction pattern. On the other

research papers

478 Avi Elkharrat et al. � Diffraction on �-lattices Acta Cryst. (2009). A65, 466–489

Figure 9
Partition of the �-lattice diffraction pattern: R3;3 (top), R4;4 (middle), and R5;4 and R5;5 (bottom). On the right the corresponding images in internal space
are shown.



hand, in the second pattern, the peaks are not distributed in

the same fashion. Most of the satellite peaks remain in PðX8Þ,

but some of them appear in PðX7Þ. Note that the intensity of

the shifted peaks is somewhat high.

7.4.3. Individual windows. Let us now focus on individual

windows of the Penrose set. As expected, the decompositions

are standard pentagonal diffraction-pattern decompositions.

They are shown for a large window in Table 9 and for a small

window in Table 10.

7.5. Random window sets

In this section we display diffraction patterns of sets

admitting disorder. The initial set is a pentagonal set, to which

we progressively add disorder. We chose the following values

for �max 2 f0:2; 0:4; 0:6; 0:8; 1g. The partition displayed in

Table 11 is for �max ¼ 0:2 and the partition displayed in Table

12 is for �max ¼ 1. Once again, the conclusion is that it is not

possible to distinguish such random sets from pentagonal or

decagonal sets, except for a global intensity decay, as was the

case for distinguishing pentagonal and decagonal sets (x7.3).

7.6. The model of Steurer and Kuo

We conclude this study by a brief overview of the analysis of

the Steurer and Kuo model. The quasiperiodic atomic struc-

ture arising from this model was determined for the decagonal

phase of nominal composition Al65Cu20Co15 on the basis of

X-ray diffraction experiments (Steurer & Kuo, 1990a,b; Fett-

weis, 1994; Fettweis et al., 1995). The structure is constructed

from the projection of a five-dimensional lattice: four dimen-

sions are devoted to quasiperiodic planes; the fifth, which is

perpendicular to the four others, represents the periodic

direction. This allows the reciprocal lattice to be indexed with

five indices.

Remark 6. As ascertained through Tables 13 to 16, there is

quite a difference between the mathematical structures we

have displayed so far and the present Steurer and Kuo

physical model, refined on the basis of experimental data.

(1) Two-dimensional models are not directly adaptable to

the Al65Cu20Co15 structure. One should compute the diffrac-

tion pattern for the three-dimensional structure. The reason

for this is that there exist constructive and destructive inter-

ferences between different diffracting planes, as we shall see

below. In Tables 13 to 16, we give the partition of the

diffraction pattern as derived from the moduli of the ampli-

tudes of the peaks instead of their intensities.

(2) We have to take into account the atomic form factor,

which depends on the wavevector k in an X-ray diffraction

experiment.

7.6.1. The Steurer and Kuo model. The Steurer and Kuo

model is composed of eight pentagonal windows in which are

distributed the three elements of the AlCuCo alloy. The

structure factor is given by
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Figure 10
Above: the diffraction pattern of a Gaussian window set, with the grid G0.
Below: the corresponding image in internal space, with the convex hull
�7R� .

Table 3
Partition of an isotropic neutral set.

j

Xi 0 1 2 3 4 5 6 7

X0 = 1 1
X1 = 0.965234 2
X2 = 0.911513 10
X3 = 0.78456 10
X4 = 0.715022 12
X5 = 0.415008 20 42
X6 = 0.156594 2 28 56
X7 = 0.02 10 108 90



FðkÞ ¼ ð1=�totÞ
P8

j¼1

expði2�k � rjÞ
~FFjðk’ÞTjðk’; k�Þgjðk�Þ: ð28Þ

The summation is taken over the eight different surfaces,

indexed by j ¼ 1; . . . ; 8. The notations correspond to the

following elements:

(1) �tot is the total surface of all the eight windows.

This normalization factor replaces the total number of

atoms in a unit cell for structure-factor computation of a

crystal.

(2) ~FFj is the mean form factor for each window, considering

occupation rates. We have
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Figure 11
Pentagonal diffraction-pattern partition: top R0;0, R2;1 and R2;2; bottom R3;2 and R3;3. Notice here and in the following figures to what extent the original
tenfold symmetry is present at each step of the partition.

Table 4
Partition of a pentagonal set.

j

Xi 0 1 2 3 4 5 6 7 8

X0 = 1 1

X2 = 0.986523 2 8
X3 = 0.965038 2 8
X4 = 0.910641 2 8
X5 = 0.780226 24 36
X6 = 0.510066 2 34 44
X7 = 0.13773 10 134 146
X8 = 0.02 36 146 108

Table 5
Partition of a decagonal set.

j

Xi 0 1 2 3 4 5 6 7 8

X0 = 1 1

X2 = 0.983761 2 8
X3 = 0.957952 2 8
X4 = 0.893036 2 8
X5 = 0.740135 24 36
X6 = 0.438388 2 34 44
X7 = 0.078671 10 134 146
X8 = 0.02 24 86 40



~FFj ¼ pjðp
Al
j fAl þ pMT

k fMTÞ;

where

(a) pj is the total occupation rate for window j;

(b) pAl
j is the occupation rate for aluminium and fAl is the

form factor for aluminium;

(c) pMT
k is the occupation rate for transition metals, i.e.

cobalt or copper, and fMT is the mean form factor of the two

transition metals.1

(3) Tj is the Debye–Waller temperature factor.
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Figure 12
Pentagonal diffraction-pattern partition: top R4;3 and R4;4; middle R5;4 and R5;5; bottom R6;4, R6;5 and R6;6.

1 Their form factors are too close to be distinguishable during the experiment.
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Figure 13
The diffraction pattern of a Penrose set.

Table 6
Partition of a Penrose set.

j

Xi 0 1 2 3 4 5 6 7 8 9

X0 = 1 1

X5 = 0.92691 6 4
X6 = 0.757223 2 14 4
X7 = 0.378328 5 34 34
X8 = 0.038948 2 8 2 12 34 86 136 90
X9 = 0.02 10 34 40 16

Table 7
Partition of a Penrose set with the first weight function.

j

Xi 0 1 2 3 4 5 6 7 8 9

X0 = 1 1

X5 = 0.932513 6 4
X6 = 0.774617 2 14 4
X7 = 0.412985 2 34 34
X8 = 0.060652 2 8 2 12 34 42 66 74
X9 = 0.02 68 222 212 48

Table 8
Partition of a Penrose set with the second weight function.

j

Xi 0 1 2 3 4 5 6 7 8 9

X0 = 1 1

X5 = 0.922402 6 4
X6 = 0.743338 2 14 4
X7 = 0.333604 2 8 2 8 2 34 34
X8 = 0.032751 4 34 96 172 114
X9 = 0.02 18 24 8

Table 9
Partition of a Penrose set with a large window.

j

Xi 0 1 2 3 4 5 6 7 8 9

X0 = 1 1

X2 = 0.996369 2 8
X3 = 0.990517 2 8
X4 = 0.975333 2 8
X5 = 0.936498 24 36
X6 = 0.84088 2 34 44
X7 = 0.628119 10 134 146
X8 = 0.288875 44 336 330
X9 = 0.02 106 820 694

Table 10
Partition of a Penrose set with a small window.

j

Xi 0 1 2 3 4 5 6 7 8 9

X0 = 1 1

X2 = 0.990432 2 8
X3 = 0.975114 2 8
X4 = 0.935947 2 8
X5 = 0.839592 24 36
X6 = 0.625628 2 34 44
X7 = 0.266554 10 134 146
X8 = 0.02 42 300 258



(4) gjðk�Þ is the geometrical structure factor, that is the

Fourier transform of the window.

7.6.2. Multiresolution partition. We present the partition of

the diagram for planes l = 0, l = 1, l = 2 and l = 3 in Tables 13,

14, 15 and 16, respectively. The corresponding diffraction

patterns are shown in Figs. 15–18.

Remark 7. All the models previously considered in this paper

had uniform structure factors. This is obviously not the case

for the Steurer and Kuo model, where the factor decreases for

large angles. Moreover, we have to consider interactions

between the different chemical elements within the structure,

see equation (28). Therefore, the partition we display here can

only be considered as a trial (blank boxes or rows correspond

to empty sets). We shall not try to derive physical properties

from it.

On the other hand, we wish to take this study further in

order to refine the multiresolution partition.
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Figure 14
Penrose set diffraction-pattern partition: top R5;4, R5;5; middle R6;4, R6;5 and R6;6; bottom R7;5, R7;6 and R7;7.



8. Pertinence of the multiresolution partition

We have presented partitions of diffraction patterns based on

the �-numeration, which naturally emerges as an efficient tool

every time the number � is involved as an inflation factor,

possibly combined with rotational symmetries, as is the case

for quasicrystals. Note that the �-numeration has already been

introduced in Elkharrat (2004a,b) to label the Bragg peaks of

one-dimensional quasiperiodic structures. It has been used in

the building of function bases, such as wavelet bases (Andrle et

al., 2004), and in the building of space symmetry groups for

�-lattices (Elkharrat et al., 2004). Finally, it is an efficient tool

for characterizing Voronoi cells of �-lattices (Elkharrat &

Frougny, 2005).

Let us now give some indication of the interest of the

multiresolution partition of diffraction patterns of aperiodic

sets.

We are experimenting with a new method. The essential

part of the pure point information can be read at once, thanks

to the Ri;j array. The set of the Ri;j’s are, so to speak, the

‘fingerprints’ of the structure. If the diffraction pattern of the

latter is purely observational, finitely different fingerprints are

possible, depending on the orientation, as discussed in x6.2.

Then the set of such fingerprints will be viewed as the

fingerprint of the structure. What we can observe from the Ri;j

components with regard to the chosen window in real space

for cut-and-project sets is that there is a neat difference

between sets like the �-grid itself or subsets of the latter

filtered through a quite elementary window (pentagonal,

decagonal, Gaussian, random, . . . ) and more elaborate models
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Table 11
Partition of a random set with �max = 0.2.

j

Xi 0 1 2 3 4 5 6 7 8

X0 = 1 1

X2 = 0.985285 2 8
X3 = 0.961868 2 8
X4 = 0.902804 2 8
X5 = 0.76262 24 36
X6 = 0.479748 2 34 44
X7 = 0.115008 10 136 146
X8 = 0.02 30 126 92

Table 12
Partition of a random set with �max = 1.

j

Xi 0 1 2 3 4 5 6 7

X0 = 1 1

X2 = 0.963035 2 8
X3 = 0.905867 2 8
X4 = 0.770592 2 8
X5 = 0.498559 24 36
X6 = 0.140072 2 34 44
X7 = 0.02 10 78 50

Figure 15
The diffraction pattern of the Steurer and Kuo model for the plane l = 0.
Above: in the physical space together with the grid G0; below: in the
internal space together with the envelope �8R�.

Table 13
Partition of the Steurer and Kuo model for l = 0.

j

Xi 0 1 2 3 4 5 6 7 8 9

X6 = 51.65 6 4
X7 = 10.59 2 16 28 36 28

X9 = 3.8 2 10 8 6 32 80 110 66 16
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Figure 16
The diffraction pattern of the Steurer and Kuo model for the plane l = 1.

Table 14
Partition of the Steurer and Kuo model for l = 1.

j

Xi 0 1 2 3 4 5 6 7 8 9

X5 = 30.19 2 8 2 8
X6 = 25.75 4 16
X7 = 9.72 12 16 38 24
X8 = 9.47 4 16
X9 = 5.56 12 34 96 40

Table 15
Partition of the Steurer and Kuo model for l = 2.

j

Xi 0 1 2 3 4 5 6 7 8 9

X6 = 38.38 6 4
X7 = 10.71 2 16 28 36 28
X8 = 6.98 4 20 32 28 16
X9 = 2.85 2 8 4 54 142 122 28

Figure 17
The diffraction pattern of the Steurer and Kuo model for the plane l = 2.



like Penrose sets or the Steurer–Kuo model, for which the

filtering leads to more sparse occupation of �-grid sites in real

space and a combination of dense packing at lines X7, X8, X9

and extinctions at earlier lines. This fact can be understood

from the mathematics of diffraction of cut-and-project sets (in

so far as the latter are QC realistic models): the more elabo-

rate the construction of the window is in terms of multi-

plication by more-or-less localized functions (departing from

characteristic functions), the more irregular is the distribution

of the Bragg peaks in terms of intensity and scale (departing

from simple convolution with sinc). Hence, one can loosely

conclude that our ‘fingerprints’ easily discriminate between

simplistic models and supposedly more realistic ones. Conse-

quently, this partition eases the classification of aperiodic sets,

as we have briefly seen with the numerical examples. On this

basis, it would be interesting to extend this classification and to

sort all the different structures, both theoretically and

experimentally determined.

Of course, the partition does not give exhaustive informa-

tion on the diffraction pattern. It is necessary to rely on

complementary sources of information. For example, we

obviously have no information on the continuous part of the

pattern.

One can argue that the �-lattices are not symmetrical and

thus destroy the natural symmetry of the problem. However,

just a look at the figures displaying progressive multi-

resolutions of diffraction patterns clearly shows that the

�-lattices do not destroy the symmetry. They are precisely

built to comply with existing symmetry constraints as much as

possible. Of course, they do not have themselves rotational

symmetries like a cut-and-project set with a suitable

symmetric window would have, but indubitably their

‘neutrality’ with regard to any kind of symmetry related to � is

an advantage. Choosing instead a point set with given

symmetry as a multiresolution background would introduce a

bias in favor of that symmetry. It is in our opinion the deep

meaning of ‘�-lattices as universal labeling frame’, built from

the numeration system naturally adapted to the symmetry

considered. As a matter of fact, in the case of � ¼
� ¼ 2 cosð�=5Þ, � ¼ �=5 for the angle between the two axes

appears likely to be the most ‘economical’ choice for including

any union of cut-and-project sets with fivefold or tenfold

symmetries [see, for instance, Burdı́k et al. (1998) or Gazeau &

Krejcar (2000)].

One can also argue that the Xj and thus the cardinals of the

sets Pj or Ri;j might change as a function of a slight pertur-

bation of the spectrum, as for all methods of classification

based on a succession of cutoffs. These changes might be

appreciable at large intensities (which are not crucially

discriminating) but not at smaller intensities, where the

cardinals become increasingly larger and, we believe, irrele-

vant with regard to a necessary comparative statistical analysis

of the fingerprints.

A strong point of the partition, as compared to other

methods, is a better readability of data derived from a

diffraction pattern. Peaks are organized in a hierarchical

fashion, according to their intensity level and according to
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Table 16
Partition of the Steurer and Kuo model for l = 3.

j

Xi 0 1 2 3 4 5 6 7 8 9

X5 = 23.05 2 8 2 8
X6 = 19.19 4 16
X7 = 6.23 2 20 16 52 40
X8 = 6.11 4 16
X9 = 3.37 4 28 24 92 72

Figure 18
The diffraction pattern of the Steurer and Kuo model for the plane l = 3.



their scale level within the nested sequence of �-lattices.

Moreover, each step of the multiresolution process unveils in a

regular progressive way the rotational symmetries present in

the original pattern (e.g. twofold, then tenfold for a ring of

Bragg peaks). We are aware that the studies we have

presented here have to be completed with comparative

statistical analysis of the repartition of the Ri;j versus academic

examples as well as experimental data. This will be the aim of a

future study.

As a final comment, it is likely that a large part of quasi-

crystallography can be expressed in terms of �-numeration.

The multiresolution partition of diffraction patterns fostered

by �-lattices is then a part of a whole system which allows

quasicrystallography to be tackled in an altogether coherent

way.

APPENDIX A
Algebraic objects: cyclotomic rings and PV numbers

Since we are concerned with the cyclotomic extension ring of

the Nth root of unity 	 ¼ expði2�=NÞ defined by

Z½	� ¼
PN�1

q¼0

Z	q ¼ Z 2 cosð2�=NÞ½ � þ Z 2 cosð2�=NÞ½ �	;

we recall here some definitions on numbers together with the

algebraic rings they generate.

The point set

Z 
 � 2 cosð2�=NÞ½ �

¼
def
fm1 þm2
þ . . .þmqN


qN�1
j m1;m2; . . . ;mqN

2 Zg

is the extension ring on the integers of the algebraic integer

2 cosð2�=NÞ, with qN the degree of its minimal polynomial.

In the noncrystallographic cases Pisot–Vijayaraghavan

(PV) numbers are involved.

Definition 2. A Pisot–Vijayaraghavan, or PV, number � > 1 is

an algebraic integer, dominant root of the polynomial

PðXÞ ¼ Xn
� an�1Xn�1

� . . .� a1X � a0;

with a0; . . . ; an�1 2 Z, such that the modulus of each of its

Galois conjugates, i.e. the other roots of PðXÞ, is strictly

smaller than 1. It is said to be a unit if a0 ¼ 
1.

Denote by Z½�� ¼ fm0 þm1�þ . . .þmn�1�
n�1 j mi 2 Zg

the extension ring generated by such a �.

Definition 3. A cyclotomic PV number with symmetry of order

N is a PV number � such that

Z½�� ¼ Z½2 cosð2�=NÞ�:

Hence we have for such cyclotomic PV numbers2

Z½	� ¼ Z½�� þ Z½��	: ð29Þ

The set Z½	� is clearly invariant under rotation of order N

about the origin, because of the relation 	2 ¼ 
	 � 1 2 Z½	�,
and is a natural framework for two-dimensional structures

having � as an inflation factor and 2�=N as a rotational

symmetry, as arises in quasicrystallography.

Examples of such cyclotomic PV numbers are precisely

those listed in cases 1 and 2.

APPENDIX B
The basics of b-numeration and b-integers

Everyone is familiar with the binary system used to express

real numbers as series in powers of 2:

R 3 x ¼ 
ðxj2
j
þ xj�12j�1

þ . . .þ xl2
l
þ . . .Þ; ð30Þ

where j ¼ jðxÞ 2 Z is the highest power of 2 such that

2j 	 jxj< 2jþ1, xj = integral part of jxj=2j � ½jxj=2j� 2 f0; 1g.

The other expansion coefficients xl 2 f0; 1g are inductively

defined by xl ¼ ½2rlþ1�, rl = fractional part of 2rlþ1 � f2rlþ1g,

with rj ¼ fjxj=2jg. As a consequence, a positive x is a word,

xjxj�1 . . . x1x0 � x�1x�2 . . ., made with letters xl in the alphabet

f0; 1g. The standard ordering of the positive real numbers

corresponds to the lexicographical ordering of those

words, and the natural numbers are those for which

xl ¼ 0 for all l< 0. The same algorithm, called a greedy

algorithm, can be employed to represent real numbers in a

system based on an arbitrary real number �> 1:

R 3 x ¼ 
ðxj�
j þ xj�1�

j�1 þ . . .þ xl�
l þ . . .Þ � 
xjxj�1 . . .

x1x0 � x�1x�2 . . ., where the ‘letters’ assume their values in the

alphabet f0; 1; . . . ; �� 1g if � is natural, and b�c if � is not.

But if � is not natural, not all words are allowed.

Let us see how this works in the case � ¼ �. Since

� ¼ 1:618 . . ., the alphabet is f0; 1g, and so any positive x is

represented in ‘basis �’ by

x ¼
Pj

l¼�1

xl�
l � xjxj�1 . . . x1x0 � x�1x�2 . . . ; ð31Þ

where xl 2 f0; 1g, and xlþ1xl ¼ 0. The latter ‘forbidding rule’

expresses the algebraic fact that �lþ1 þ �l ¼ �lþ2. So, any 1 in

the �-expansion (31) has to be followed by 0 whereas 0 can be

followed by 0 or 1. All allowed words can be lexicographically

ordered following that constraint and this order corresponds

to the standard order on the real line. By definition, the

positive �-integers are those real numbers which have only

positive powers of � in their �-expansion (31). So, we will

denote them by

Z
þ
� ¼ x ¼

Pj

l¼0

xl�
l; xl 2 f0; 1g; xlxlþ1 ¼ 0

� �
: ð32Þ

Accordingly, the set of �-integers is defined by

Z� ¼ Z
þ
� [ ð�Z

þ
� Þ:

For instance, the first positive �-integers are given by
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1 1=� 1z}|{ z}|{ z}|{
0 1 � �2

ð0Þ ð0Þ ð10Þ ð100Þ

1 1=� 1z}|{ z}|{ z}|{
�2 þ 1 �3 �3 þ 1

ð101Þ ð1000Þ ð1001Þ:

We thus obtain a sequence of numbers strictly increasing in

steps of length equal to 1 or 1=�. In a certain sense, this

quasiperiodic sequence with two incommensurable periods is

closest to the periodic one with period equal to 1, namely the

sequence of the integers.

Generalization of this example is straightforward.

Definition 4. The set of �-integers is the set of real numbers

such that their �-expansions have a �-fractional part equal to

0,

Z� ¼ fx 2 R j hjxji ¼ xkxk�1 . . . x1x0g

¼ Z
þ
� [ Z

�
� ; ð33Þ

where Zþ� is the set of non-negative �-integers and Z�� ¼ �Z
þ
� .

For the other � of interest in quasicrystallography, the first

positive �-integers read as

Z
þ
� ¼ f0; 1; 2; �; �þ 1; �þ 2; 2�; �2; �2

þ 1; . . .g;

Z
þ
� ¼ f0; 1; 2; �; � þ 1; � þ 2; 2�; 2� þ 1; �2; �2 þ 1; . . .g;

Z
þ
� ¼ f0; 1; 2; 3; �; � þ 1; � þ 2; � þ 3; 2�; 2� þ 1; 2� þ 2; . . .g:

APPENDIX C
Scaled b-integers and nested decompositions of
extension rings

Here we prove that the set Z½��, for � a quadratic Pisot unit, is

the inductive limit of nested sequences of (possibly decorated)

scaled versions of Z�.

Let us first explain how the construction of the set of

�-integers is related to the algebraic cut-and-project algorithm

(Berman & Moody, 1994). The Galois conjugation is the

map

x ¼ mþ n� 7! x0 ¼ mþ n�0; ð34Þ

where m; n 2 Z. Now define the aperiodic set ��,

��
¼ fx 2 Z½�� j x0 2 �g;

where �, referred to as the window of ��, is a bounded subset

of R with non-empty interior, see Moody & Patera (1994) and

Moody (1997). The sets of non-negative and non-positive

�-integers are given by the following equations (Frougny et al.,

2003; Burdı́k et al., 1998).

Case 1:

Z
þ
� ¼ �ð�1;�Þ

\ R
þ;

Z
�
� ¼ �ð��;1Þ \ R�: ð35Þ

Case 2:

Z
þ
� ¼ �½0;�Þ \ Rþ;

Z
�
� ¼ �ð��;0� \ R�: ð36Þ

We are now interested in the decomposition of the set Z½��,
i.e. the support of diffraction patterns produced by one-

dimensional aperiodic sets, using the nested sequence of

subsets ðZ�=�
jÞj2Z. Recall that the sets of �-integers are self-

similar sets obeying

. . . � Z�=�
j�1 � Z�=�

j � Z�=�
jþ1 � . . . � Z½�� ð37Þ

with j 2 Z. Note that equation (37) does not necessarily mean

that Z½�� is the limit of the sequence ðZ�=�
jÞj2Z, in the sense of

Definition 1, as we shall see in the following.

Case 1.

In the algebraic cut-and-project formalism, the sequence

ðZ�=�
jÞj2Z reads

Z
þ
� =�

j
¼ �ð��

j;� jþ1Þ
\ R

þ;

Z
�
� =�

j ¼ �ð��
jþ1;� jÞ \ R

�;

with j 2 Z. These equations show that Z½�� is the limit of the

sequence ðZ�=�
jÞ,

lim
j!1

Z�=�
j

� �
¼ Z½��: ð38Þ

Thus, we have a partition of Z½��, in terms of the self-similar,

inflated or deflated versions of Z�.

Case 2.

In the algebraic cut-and-project formalism, the sequence

ðZ�=�
jÞj2Z reads

Z
þ
� =�

j
¼ �½0;�

jþ1Þ
\ R

þ;

Z
�
� =�

j ¼ �ð��
jþ1;0� \ R

�;

with j 2 Z. In this case, it is clear that we cannot find an

approximation sequence for Z½�� like in equation (38).

Nevertheless, we can recover such a nested approximation

sequence if we use the decorated set of �-integerseZZ� ¼ Z� þ 0;
1=�
	 


;

which reads, in the cut-and-project formalism,eZZþ� ¼ �ð��;2�Þ \ Rþ; eZZþ� =� j ¼ �ð��
jþ1;2� jþ1Þ \ R

þ;eZZ�� ¼ �ð�2�;�Þ
\ R

�; eZZ�� =� j
¼ �ð�2� jþ1;� jþ1Þ

\ R
�;

with j 2 Z. We now have

lim
j!1

eZZ�=� j
� �

¼ Z½��: ð39Þ

When the number � is a quadratic PV unit, as is the case here,

such a decomposition is immediate. However, when the

degree of the minimal polynomial is greater than 2, this
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question is highly non-trivial (Akiyama et al., 2004; Sidorov,

2003). A complete study of the approximation of Z½�� by the

nested sequence ðZ�=�
jÞj2Z can be found in Elkharrat

(2004a,b), together with the partition of diffraction measures

it generates, and with some numerical examples.

APPENDIX D
Penrose point set within the cut-and-project framework

The algebraic construction of the set of nodes of a standard or

singular Penrose tiling is not immediate. Here we first recall

the main steps of such a construction based on algebraic

filtering and coloring in Z 	 ¼ exp½ið2�=5Þ�½ �, following Moody

& Patera (1994). We next explain how the same construction

can be achieved by sieving �-lattices (Gazeau & Krejcar,

2000).

Denote by � : Z½	� 7!Z5 � Z=5Z the coloring ring homo-

morphism given by

z ¼ n4	
4
þ n3	

3
þ n2	

2
þ n1	 þ n0

7!�ðzÞ ¼ n4 � n3 þ n2 � n1 þ n0 mod 5:

The fact that the integer on the right-hand side of the equation

is defined modulo 5 is trivially due to the relation

	4 � 	3 þ 	2 � 	 þ 1 ¼ 0. The color of a z 2 Z½	� is left

unchanged under star mapping, and we have

�ð	�Þ ¼ ð�ð	ÞÞ3 ¼ �1. Let �1 denote the pentagonal convex

hull of the set f1; 	2; 	4; 	6; 	8g, �2 ¼ ���1, �3 ¼ ��1 and

�4 ¼ ��1, the vertices of which are of colors 1, 2, 3 and 4,

respectively. Let then the set ��k � Z½	� be defined by

��k ¼ fz 2 Z½	� j z� 2 �k; �ðzÞ ¼ kg:

One example of a (singular) Penrose set P is the union of the

four ‘colored’ sets ��k,

P ¼
[4

k¼1

��k : ð40Þ

Note that this point set is fivefold rotationally invariant about

the origin. It is obvious from equation (10) that the Penrose

set defined in equation (40) is not embedded in �ð�Þ, but its

inflated version is,

�P ¼
[4

k¼1

���
k

¼ z 2 �ð�Þ j z� 2 �ð1=�Þ�k; �ðzÞ ¼ 3k mod 5
	 


:

We thank both referees for their very constructive remarks.

They pointed out many problems in our original text and their

comments, criticisms and questions helped us great deal to

correct and improve our work.

References

Akiyama, S., Rao, H. & Steiner, W. (2004). J. Number Theory, 107
135–160.
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